第77回 国試

2025年2月20日に実施された診療放射線技師 第77回 国家試験を見ていきましょう。
どんな問題が出ているんでしょう・・・
第76回は納得のいかない問題(変な問題)が2問も出題されたので、ちょっと心配です。

さらに第77回から科目編成が変更されていますから、放物が何問目なのかもわからない状況でした。

解答も掲載しておりますが、厚労省からの正式発表前ですので、暫定的なものとして捉えてください。

AM

放物は60問目からだったようですね。

AM60

電離性の電磁放射線はどれか。

  1. α 線
  2. β 線
  3. γ 線
  4. 中性子線
  5. マイクロ波

これは簡単だと思ったのですが、結構ひっかかってしまった学生が出ましたね。
知識的には1年生でも解ける内容なんですがね・・・
やはり本番だと舞い上がってしまうのでしょうか。
甲子園のマウンドのように魔物が住んでいるのかもしれませんね。

解説を見る。

答えは 3 ですね。

問題文の条件から電離能力を有し、かつ電磁放射線でなくてはなりません。
電離能力を有するのは、1、2、3、4です。
電磁放射線なのは、3、5です。

したがって、両方の条件を満たすのは 3 γ線 のみとなりますね。

AM61

光子と物質の相互作用で正しいのはどれか。

  1. 特性X線は連続スペクトルを持つ。
  2. 光電効果は最外殻の電子で起こることが多い。
  3. 電子対生成の生じた位置で消滅放射線が発生する。
  4. コンプトン散乱において散乱光子の波長は入射光子の波長より長くなる。
  5. 光子エネルギーが1MeVのとき鉛と光子の相互作用は電子対生成が主である。

ちょいと引っ掛かりやすい枝もありますが・・・

解説を見る。

答えは 4 ですね。

  1. 特性X線は線スペクトルです。
  2. 光電効果はK殻が最も起こりやすいです。K殻以外で起こる光電吸収断面積の合計は、K殻のそれの20%程度になると実験で判明しています。
  3. この枝でひっかかる場合があります。消滅放射線が発生するのは、電子対生成で生じた陽電子が停止し、対消滅する位置で発生します。
  4. 散乱光子のエネルギーは入射光子よりも高くなることはありません。したがって、散乱光子のエネルギーは入射光子と同じか、それよりも低くなります。波長で表すと同じか長くなります。
  5. 1MeVの光子の場合、どんな物質であってもコンプトン散乱が主になります。(図を参照)
エネルギーと物質の組合せによって変化する相互作用

AM62

重荷電粒子の質量衝突阻止能で正しいのはどれか。

  1. 物質の密度に反比例する。
  2. 物質の原子番号に反比例する。
  3. 入射粒子の質量に反比例する。
  4. 入射粒子の電荷数に比例する。
  5. 入射粒子のエネルギーに反比例する。

これは、阻止能の式さえ覚えていれば楽勝のはず。

解説を見る。

答えは 5 です。

この式を覚えていますか?
各文字の定義はこちら。

  • (S/ρ)col 質量衝突阻止能
  • m 粒子の質量
  • zi 粒子の電荷数
  • E 粒子のエネルギー
  • v 粒子の速度
  1. 「質量」と付いている場合は、密度に依存しなくなります。「線」阻止能では密度に左右されてしまうます。それだと使いにくいということで、密度で除して依存しなくなるようにしたものです。
  2. 物質の原子番号にも依存しません。1番の枝と同じく、「線」阻止能だと物質の原子番号に左右されますが、「質量」阻止能なので依存しません。
  3. 入射粒子の質量には比例します。
  4. 入射粒子の電荷数の「2乗」に比例します。これは引っ掛かるかもしれませんね。
  5. 式からも明らかですね。エネルギーが分母側にありますから反比例です。

AM63

 50keV光子のAl(原子番号13、原子量27、密度2.7g・cm-3)に対する線減弱係数が1.0cm-1であるとき、この光子エネルギーに対するAlの電子断面積[b](バーン)に最も近いのはどれか。
 ただし、アボガドロ数を6.0×1023、1b=10-24cm2とする。

  1. 0.08
  2. 0.4
  3. 1.3
  4. 4.8
  5. 17

はじめてのパターンですね。

解説を見る。

答は 3 です。

電子断面積の算出式
  • eμ 電子断面積
  • μ  線減弱係数
  • ρ  密度
  • Ne 電子数
  • NA アボガドロ数
  • A 原子量
  • Z  原子番号

西臺先生の「放射線医学物理学 第3版増補」のP.83上部に減弱係数の一覧が掲載されているので、ぜひご参照ください。

AM64

医療物理は諸事情によりパスです。
悪しからず。

PM

午後も放物は60番からでしたね。

PM60

放射性壊変で正しいのはどれか。

  1. α壊変は質量数が2減る。
  2. β壊変は質量数が1減る。
  3. β壊変は原子番号が1減る。
  4. γ壊変は原子番号が変化しない。
  5. 軌道電子捕獲は質量数が1増える。

これはツッコみたい枝が・・・

解説を見る。

答えは 4 です。

  1. α壊変では質量数が 4 減る。
  2. β壊変は質量数は 変わらない
  3. β壊変は原子番号が1増える
  4. OK
  5. 軌道電子捕獲は質量数が 変わらない

4はOKですが、γ「壊変」という表記は不適切に感じます。
γ線「放射」やγ線「放出」の方が正しい表記だと思います。
γ線を放出しているだけで、原子核内の内部構造に変化はありません。
余分なエネルギーを放出しているだけですので、壊れている訳ではありませんからね。
まぁ、イチャモンの類ですからお気になさらず。

PM61

光電効果が生じたときに放出されるのはどれか。2つ選べ。

  1. β 線
  2. δ 線
  3. 特性X線
  4. 内部転換電子
  5. Auger<オージェ>電子

これはイケるでしょう。

解説を見る。

答は 3 5 です。

光電効果は光子による電離現象です。
なおかつ、光電効果はK殻が最も起こりやすいという特徴があることから、内殻に空位ができることになります。
内殻の空位には外殻から軌道電子が遷移してきます。
それに伴い、特性X線またはオージェ電子の放出が起こります。

  1. β線はβ壊変に伴って放出される電子で、光電効果とは無関係です。
  2. δ線(デルタ線)は荷電粒子によって放出された二次電子のうち、電離能力を有するものです。光電効果は光子によって二次電子(光電子)を放出する現象ですから、光電子が電離能力を有していたとしても、δ線とは呼ばれません。
  3. OK
  4. 内部転換電子は励起状態の原子核からγ線が放出され、原子外に出る前にγ線の代わりに放出される軌道電子です。光電効果とは関係ありません。
  5. OK

PM62

核種から放出される陽電子の最大飛程で最も短いものはどれか。

  1. 11C
  2. 18F
  3. 13N
  4. 15O
  5. 68Ga
解説を見る。

答えは 2 です。

これは、常々海馬が萎縮していると豪語している僕には難しい問題なんです。
エネルギーなんて覚えていられません。
ストーリー性のない暗記が苦手な僕と同類の方にも難問に思うのではないでしょうか・・・

エネルギーが高い方が陽電子の飛程が伸びますので、放出する陽電子のエネルギーが低いものを選べばOKです。エネルギーをあげておきます。

  1. 960keV
  2. 634keV
  3. 1198keV
  4. 1732keV
  5. 1899keV

PM63

中性子と物質の相互作用で正しいのはどれか。

  1. 熱中性子では相互作用は生じない
  2. 物質の軌道電子との相互作用が主である。
  3. 減速材として高原子番号の物質が用いられる。
  4. 中性子捕獲断面積は中性子の速度に比例する。
  5. 速中性子は物質の厚さとともに指数関数的に減少する。
解説を見る。

答えは 5 です。

  1. 熱中性子に限らず、どんなエネルギーの中性子でも主な相互作用は弾性散乱である。熱中性子は弾性散乱の他に捕獲反応も良く起こる。
  2. 中性子は電荷を持たないため、クーロン力の影響を受けない。したがって原子核との相互作用が主となる。
  3. 減速材は中性子のエネルギーを効率よく奪い取るものである。したがって、中性子と質量数の等しい陽子(水素)を多く含むものが適している。したがって、低原子番号物質の方が減速材として適している。
  4. 中性子捕獲断面積は中性子の速度に反比例する。これを1/v法則という。
  5. OK。中性子の減弱は線減弱係数に従います。

PM64

これまた医療物理ですので諸事情によりパスです。
すみません。

第77回 放物 総評

いかがだったでしょうか。
昨年は読み取った数値で計算すると選択肢のちょうど真ん中になり選べない問題や、出題ソースが学会誌にチョロっとだけ掲載された図など、学生に問うには少々・・・いや、だいぶ酷な出題が多かった印象でしたね。
それを踏まえてか、今年は優しさ溢れる出題だったように感じます。

まとめ

毎年、国試はこんな感じの難易度が良いと思います。

こちらもぜひ

 この記事を最大限活用するワークブックを販売中です。下記リンクまたはコチラからどうぞ。

 https://amzn.to/4gs1zkr

 また、ルーズリーフ用リフィルバージョンのご用意もございます。問題集ページでご確認頂き、フォームからお問い合わせください。

お願い

本サイトに掲載されている図やイラストの著作権は管理人にあります。
無断掲載や転載は禁止します。

また、リンクしていただける場合はご一報いただけますと幸いです。
励みになります。

By H.Tanaka

1984年生まれの放射線技師です。 放射線技師養成校で核医学・物理・電気の講義を担当しています。 放射線技師の割に、不思議なことに現場科目より基礎科目の方を多く持っています。そのせいか、学生からは技師じゃないと思われている節があります。 専門知識よりは、学生が理解しやすい表現を心がけています。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

CAPTCHA



reCaptcha の認証期間が終了しました。ページを再読み込みしてください。